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Abstract

Neural networks are applied to model and
predict experimentally measured vibratory hub
loads. Data from a wind tunnel test of a four-
bladed hingeless rotor in forward flight (with
individual blade control) were used to provide
2P and 3P control amplitude, control phase, and
vibratory hub loads. A metric consisting of an
equally weighted combination of five 4P
vibratory hub loads was used to characterize the
hub loads. Using the control phase and/or
amplitude as inputs and the vibratory hub loads
metric as output, the radial-basis function
(RBF) and back-propagation types of networks
were trained. The RBF network is robust for
interpolative purposes, including significant
nonlinearities. The RBF network also works
well when there are multiple inputs and
predictions of nonlinear non-baseline metrics
(and accompanying baseline metrics). The
back-propagation neural network is robust for
interpolation, and with some guidance, produces
acceptable extrapolations. The smallest number
of RBF network training data pairs, i.e., that
which results in the most efficient network, is
found to depend on an input phase interval limit
related to the physical rotor azimuth control
angle. This control-angle-interval-limit of 30
deg rotor azimuth is believed to be linked to the
basic physical phenomenon of vibratory hub
loads for the blade vortex interaction (BVI) test
condition studied. Finally, results show that
RBF neural networks are superior to linear

transfer matrix plant models for the
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experimental vibratory hub loads data presented
in this paper.

Notation

A Rotor disk area, nR2

An Amplitude of mP IBC input, deg

by Specified bias for kth processing
element, same as wyg

c Representative chord of the blade

Cr Rotor thrust coefficient, thrust
nondimensionalized by pA(QR)2

i Blade number; i=1 implies y=0 for
blade at helicopter tail

IBC Individual Blade Control

m Harmonic number for IBC input
Np Number of blades

R Rotor blade radius

\'% Wind tunnel airspeed, knots

Win weight for nth input in the kth
processing element

Xn Input to processing element, n=0,1,2 ...p
Yk Output of kth processing element
Os Rotor shatft angle, positive nose up, deg

Bim IBC contribution to blade pitch, mth
harmonic pitch for ith blade

n advance ratio, V/(QR)

0] Activation function for processing
element

D, Phase of mth harmonic IBC input, deg

®,"  @,/m, physical azimuth angle, deg

A®,, Interval in @, , deg

AD " Interval in @4*, physical azimuth angle,
ceg

o Rotor solidity, Nyc/zR

¥ Rotor azimuth angle, deg



Q Rotor rotational speed

Introduction

Need for Neural Networks

The development and implementation of a robust
active control system for helicopter
aeromechanics must include an accurate
representation of how the control inputs
influence the measured outputs. A good example
is how high frequency helicopter pitch inputs
influence measured airframe vibration. For
example, rotorcraft hub loads and vibration
almost always behave nonlinearly with respect
to the phase of a higher harmonic control (HHC)
input. The following experimental and
analytical work involving HHC highlights this
problem: wind tunnel test results (Ref. 1);
flight test results (Ref. 2); and analytical
results (Ref. 3).

Neural network-based techniques are an
attractive, nonlinear method for the modeling
and prediction of nonlinear systems. Neural
networks do not require large amounts of
computational resources or central processor
time.  Additionally, compared to traditional
methods they appear equally easy to apply and
understand. Neural networks have not been
extensively applied to problems in rotorcraft
dynamics and the authors believe that the
present study is the first of its kind.

A successful neural networks application
enables the accurate nonlinear identification of
important rotorcraft parameters. An efficient
neural network application can enable the
hardware implementation of feedback-driven
control systems. In the present context,
hardware implementation refers to the complete
control system and its functions (which include
modeling, optimizing, and controlling). Several
nonlinear neural network
modeler/optimizer/controller systems have
been developed for industrial processes (Refs. 4
and 5).

Brief Survey of Existing Work

Haykin (Ref. 8) is an excellent reference for
providing a practical understanding of neural
networks.

Narendra (Ref. 7) gives clear descriptions of
two types of neural networks: back-propagation
and radial-basis function, both of which are
utilized in the current effort. Haas, Milano, and
Flitter (Ref. 8) predicted helicopter component
loads using neural networks that were based on
flight test data. A back-propagation neural
network was used in this study. Cabell, Fuller,
and O'Brien (Ref. 9) applied neural networks to
identify measured helicopter noise. A back-
propagation neural network was used in that
study.

The following is an overview of the present
study. First, the topic of neural networks is
introduced and descriptions are given of the
types of neural networks that are used in the
present effort. The experimental data sets used
to develop neural networks are presented.
Experimentally derived vibratory hub loads
data, characterized by a single metric, form the
single output of the neural network. The single
input application is evaluated using four
different data sets. The mulliple input case is
evaluated using one data set. Single input
results include an investigation of the smallest
number of training data pairs required to
ultimately predict the global optimum phase. An
error investigation is performed and directed
towards deriving information of practical use
(such as the minimum number of iterations
required to obtain an acceptable network
prediction). Results from a linear transfer
matrix-based approach are compared with those
from the nonlinear, neural network based
approach. Additionally, a control-angle-
interval-limit for the physical control angle is
derived using the results of the neural networks.

Introduction to Neural Networks
Neural networks are nonlinear, iteratively
adaptive methods of identification. The
nonlinear feature becomes highly important if
the underlying physical mechanism is
inherently nonlinear (Ref. 6). Even when
applied in a localized sense, linear methods
(linear transfer matrix methods) may not be
suitable for nonlinear systems.



Description of Typical Neural
Networks

A neural network has one input layer, one output
layer, and one or more hidden layers (Fig. 1,
taken from Ref. 6). The input and output layers
are made up of user-specified inputs and
outputs. The hidden layers are comprised of
nonlinear processing elements (PE's) which are

described later.

The objective in developing a neural network
(tearning or training step) is to iteratively
train the network using known, specified input
data to minimize the error between the desired
(known outputs) and the network outputs. Once
this error (usually the RMS error) reaches an
acceptably low level, the network is considered
"trained", i.e., the modeling step is complete.
The network can now be used to predict outputs
at specified input values.

Figure 2 (taken from Ref. 6) shows a nonlinear
model of an individual PE. Each hidden layer is
made up of these PE's. The weights mulitiplying
each individual input are initially unknown. The
iterative adjustment of these weights, in order
to reduce the RMS error in the network outputs,
is the network design objective (training step).
A user-specified activation function (transfer
function), wusually a hyperbolic tangent
function, is implemented in the PE in order to
control the output amplitude of the PE.
Differentiable activation functions within each
PE are preferable since some training
algorithms use gradient information, such as the
method of steepest descent.

Relevant Types of Neural Networks
Of the available networks, the following three
were found to be useful in the present work:

1. Radial-Basis Function Neural Network
(RBF Network)

2. General Regression Neural Network
(GRNN)

3. Back-Propagation Neural Network

These networks are described below.

Radial-Basis Function Neural
Network (RBF Network) Following

the description of RBF networks given in
Chapter 7 of Ref. 6, this approach views the
design of neural networks as a curve-fitting

(approximation) problem in a high-dimensional
space. Learning is equivalent to finding a
surface in a multidimensional space that
provides the best fit to the training data.
Network generalization (ability of the network
to compute input-output relationships based on
data never used in creating or training the
network) is equivalent to the use of this
multidimensional surface to interpolate training
data. The formulation is based on traditional
strict interpolation in a multidimensional space.
In the context of a neural network, the hidden
units provide a set of "functions" that constitute
an arbitrary "basis" for the input patterns
(vectors) when they are expanded into the
hidden-unit space; these functions are called
radial-basis functions. Radial-basis functions
were first introduced in the solution of real
multivariate interpolation problems and this
topic is now one of the main fields of research in
numerical analysis (Ref. 6).

A basic RBF network has one hidden layer. The
hidden layer of a RBF network is nonlinear,
whereas the output layer is linear. Gaussian
functions are usually chosen as the radial-basis
functions within the individual PE in the one
hidden layer.

He and Lapedes (Ref. 10) introduced a second
hidden layer into the basic RBF network.
Compared to the basic, single, hidden layer RBF
approach, this double hidden layer RBF
approach involves successive approximations
and is intended to result in reduced computation
time and improved predictive ability.

He and Lapedes also introduced guidelines
governing the selection of the RBF network size.
In this paper, the authors extensively refer to
these guidelines as He and Lapedes' guidelines. A
description of these guidelines follows. If there
are N pairs of input and output data available for
training, then these N pairs can be partitioned
into M groups where N is divisible by M. For
example, in one of the applications in the
present study there are 12 unique training
(input) data pairs. This implies that there are
12 radial-basis centers available for each of the
12 pairs. Practically, in the two hidden layer
formulation, there are 12 processing elements
in the first hidden layer and any one of the
following number of groups (M) in the second
hidden layer : 6, 4, 3, or 2. Thus one possible



RBF network is: 1-12-6-1 where the first and
last 1's refer to the number of inputs and
outputs, respectively. Other possible RBF
networks are: 1-12-4-1; 1-12-3-1; or 1-
12-2-1. The present neural network
application has a very small number of training
data pairs compared to a typical neural network
application that can have hundreds of training
data pairs.

General Regression Neural

Network (GRNN, Ref. 11)

GRNN is a general purpose paradigm network
used primarily for system modeling and
prediction and can be considered a generalization
of a probabilistic neural network (Ref. 11). In
addition to being used as a static regression
technique, GRNN can be used in situations where
the statistics of the data are changing over time.
In the present effort GRNN was used in a limited
manner. GRNN was used io provide a
comparative benchmark for Case 3a, which is
described later in the paper. A GRNN has one
hidden layer.

Back-Propagation Neural Network
Back-propagation is the most popular neural
network. This algorithm has two passes during
the network design and training phase: the
forward pass and a backward pass (Ref. 6). The
forward pass produces network outputs in
response to the inputs, with the weights being
fixed during this pass. During the backward
pass, the weights are adjusted to minimize a
specified error criterion in accordance with an
error correction rule. Specifically, network
response (prediction) is subtracted from the
desired (specified) response to produce an error
signal. The error signal is then propagated
backward through the network, against the
direction of the connections, hence the name
"error back-propagation" (Ref. ©6).

A back-propagation neural network has two or
more hidden layers. One of the applications in
this study involves a trained back-propagation
network with three hidden layers and 12 PE's in
each hidden layer (1-12-12-12-1).

Present Application

The training data pairs that were used in this
study were obtained from the second

U.S./German Individual Blade Control wind
tunnel test (IBC2 test). The test article was a
four-bladed BO-105 hingeless rotor system
(owned by NASA) fitted with German IBC
electro-hydrautic actuators. The rotor system
was tested in the NASA Ames 40- by 80-Foot
Wind Tunnel (Refs. 12 and 13).

The five vibratory hub loads (axial force, side
force, normal force, pitching moment, and
rolling moment) obtained from the Rotor Test
Apparatus steady/dynamic rotor balance in the
fixed system were combined into a single metric
(square root of the sum of the squares, with
equal weighting). Only 4 per/rev (4P) load
components were used. Data were acquired by a
LabVIEW (Ref. 14) based data acquisition
system. The single test condition used in this
study is a simulated descent condition at an
airspeed of approximately 65 knots (u=0.15)
and Cy/o =0.075. Other test parameters are:
as=2.9 deg, Q=425 RPM, with the hub pitching
and rolling moments trimmed to 1600 ft-lb and
-350 ft-Ib, respectively. This descent
condition is equivalent to a 5.6 deg glide slope
angle.

The mth harmonic IBC pitch input for the ith
blade is defined as:

Bim = A sin [m (y;+90 deg) + @]

This definition of the IBC phase @, is the same as
that used in the run logs for this test. This
phase definition is different from the input
phase angle definitions used in Refs. 12 and 13.

The relevant open loop control input sets are
summarized in Table 1.

input Set  Open Loop Control Mix of Inputs
Ao Do Az o3
A 1.0 0 to 360 0 0
B 051t 20 210 0 0
C 0 0 0.5 0 to 360
D 1.0 210 0.5 0 to 360

Table 1. Range of relevant IBC open loop inputs



In the present application, the input layer in the
neural network has one or four inputs:

i) 2P input phase (at fixed amplitude) or
2P input amplitude (at fixed input
phase) - one input cases

ii) 2P and 3P input amplitudes and phases -
four inputs case

The output layer has one output, the predicted
vibratory hub loads metric. Detailed definitions
of these cases follow.

Single Input, Single Output Cases

The following defines the one input, one output
cases that were considered in this neural
network study:

Case 1. Prediction of the vibratory hub loads
metric versus the 2P phase (0 deg to
360 deg) with pitch control amplitude
a constant 1 deg. Data were acquired at
30 deg intervals in the 2P phase input
yielding 13 training data pairs
(A®,=30 deg). The first and last
training pairs (®,=0 deg and ®,=360
deg) have the same output metric. An
interpolative type of prediction is
involved in this case.

Case 2. Prediction of the vibratory hub loads
metric for a known case with some data
intentionally omitted in the network
training phase. The region of interest
is in the vicinity of the global
minimum that occurs in the 2P phase
variation of Case 1. The number of
training data pairs is 12. An
interpolative type of prediction
(inbounds prediction) is involved in
this case. The network's ability to
generalize is studied in this case.
Case 3. Prediction of the vibratory hub loads
metric with 2P control amplitude
(A,=0.5 deg to 2.0 deg) at a fixed input
phase ®,=210 deg. This case has two
sub-cases:

3a. Prediction at points which fall
within the bounds of available
experimental amplitude data. The
number of training data pairs is four.
3b. Prediction at large amplitudes
where experimental amplitude data are
not available. This was done, again, by

intentionally omitting data in the

network training phase. This type of

prediction is called an "out-of-bounds"

prediction (extrapolation). The

number of training data pairs is three.
Case 4. Prediction of the vibratory hub loads
metric versus the 3P input phase (O
deg to 360 deg) with 3P pitch control
amplitude Asa constant 0.5 deg. Data
were acquired at 45 deg intervals in
3P phase yielding 9 training data pairs
(AD®3=45 deg). The first and last
training pairs (®3=0 deg and ®3=360
deg) have the same output metric. An
interpolative type of prediction is
involved in this case.

Multiple Inputs, Single Output Case
The four inputs to the neural network in this
application are:

. 2P control amplitude, A,
. 2P control phase, @,
. 3P control amplitude, A3
. 3P control phase, @3

W -

A training data base with 37 pairs of input and
output data was used. The composition of this
37-pair training data base is:

i) Thirteen data pairs for the vibratory
hub loads metric's variation with 2P
phase, A,=1.0 deg, ®,=0 deg to 360
deg, and A3=0 deg (same training data
as in Case 1).

ii) Nine data pairs for the vibratory hub
loads metric's variation with 3P phase,
A3=0.5 deg, ®53=0 deg to 360 deg, and
A,=0 (same training data as in Case 4).

iii) Nine data pairs for the vibratory hub
loads metric's variation with 3P phase,
A3=0.5 deg, @53 = 0 deg to 360 deg,
with a superimposed 2P input given by
A,=1.0 deg, @, = 210 deg.

iv) Four data pairs for the absolute
baseline metric (zero 2P and 3P
amplitudes).

v) Two data pairs for the baseline metric
in the presence of the following 2P
input: As=1.0 deg, ®, = 210 deg.



Baseline Training Data The baseline metric in
ltem iv) is associated with zero 2P and 3P
amplitudes and is valid for all values of the 2P
and 3P phase in the domain of interest. In the
present application, this baseline metric value
shows up as a horizontal line when plotted
versus phase (0 deg to 360 deg). The inputs
that constitute the four-pair training data
formulation for the baseline in ltem iv) is thus:

A O A3 O
1. O 0 0 0
2. 0 360 0 0
3. 0 0 0 360
4. 0 360 0 360

These four training inputs are associated with
four identical baseline values for the vibratory
hub loads metric. Similar considerations hold
for the 2-pair baseline formulation in ltem v).

Results

The application of neural networks was
conducted using NeuralWorks Pro II/PLUS
(version 5.2) neural networks package by
NeuralWare (Ref. 11). The Pro II/PLUS
package was installed on an ACER Acros personal
computer with an Intel 486DX2/66 central
processor. Al network applications in this
study required approximately one 1o two
minutes of clock time to complete the training
step. Network prediction of an output case took
less than one second, even for the multiple
inputs case.

Single Input, Single Output
Application

Case 1. Metric Versus 2P Control
Phase Input

Figure 3 shows the metric's nonlinear variation
with 2P control phase (A,=1 deg) from the IBC2
test. The baseline value is the vibratory hub
loads metric without any IBC inputs. Two local
minima were identified/measured during the
wind tunnel testing.

All three types of neural networks noted earlier
were considered (RBF, GRNN, and back-
propagation). Of these three networks, an RBF

network with two hidden layers gave the best
results for this case. In this paper, only RBF
networks with two hidden layers are studied.
The first hidden layer uses Gaussian functions in
the PE's. The second hidden layer and the output
layer always use hyperbolic tangent functions in
the PE's, unless otherwise noted. Thus, all RBF
networks used in this study have a nonlinear
output layer which is unlike a basic RBF
network.

Several RBF networks with varying numbers of
PE's in the hidden layers were studied. The first
successful RBF network in this sequence of
attempts is described as follows.

1-20-15-1 RBF Network This

RBF network has one input, 20 PE's in the first
hidden layer, 15 PE's in the second hidden layer,
and one output. Network training for the 1-20-
15-1 RBF network was terminated after 5646
iterations; the final RMS error was 0.0041.
The resulting network predictions are shown in
Fig. 4. The figure shows the trained network
outputs as open triangles at the training data
points. This comparison shows the success of
the training process (modeling) to match the
experimental data set.

Also shown in Fig. 4 are predicted outputs
(interpolated outputs) from the network at
intermediate points for which there are no
experimentally-derived metric data available.
Figure 4 shows that the 1-20-15-1 RBF
network can be used to model and predict the
nonlinear variation of the metric with 2P
control phase.

Figure 4 also shows the curve fit from a linear,
single harmonic transfer matrix approach. The
linear results were obtained from the linear
regression analysis routines available in Ref.
14. This linear harmonic fit represents the
technology currently used in helicopter
vibration control studies such as Ref. 15. The
nonlinear neural network fit is clearly more
accurate. The neural network predicts the
optimum phase in the vicinity of 255 deg. The
linear transfer matrix identifies a global
optimum around 230 deg.

Revised Radial-Basis Function
Networks When a neural network learns too
many specific input-output relations, the



network is overtrained. The network may
memorize the training data and be less able to
generalize. Also, if more than the necessary
PE's are used in forming a network, then
unintended curves in the problem space are
stored in the network weights (Ref. 6).
Therefore, the 1-20-15-1 RBF network was
revised to preclude invalid function
approximations which can result in grossly
incorrect predictions.

The revised RBF networks are based on the He
and Lapedes' guidelines. With 13 training data
pairs available for training, a 1-12-4-1 RBF
network was investigated.

The 1-12-4-1 RBF network was trained for
10,000 iterations; the final RMS error was
0.0039. The resulting modeling and prediction
are shown in Fig. 5. Clearly (Figs. 4 and 5), the
1-12-4-1 RBF network performs just as well
as the 1-20-15-1 RBF network. For both
networks, a global minimum vibratory hub
loads metric value is predicted at a 2P phase
control angle of 255 deg, although the 1-12-4-
1 RBF network predicts a 10 percent lower
metric value at ®,=255 deg. The 1-12-4-1
RBF network can also be used to model and
predict the nonlinear variation of the metric
with 2P phase.

Table 2 shows that the two trained networks had
similar clock times.

RBF No. of BMS Clock time

Network lterations error seconds
0-15-1 5646 0.0039 60

1-12-4-1 10,000 0.0041 70

Table 2. Comparison of clock times for two RBF
networks

Error Investigation An error

investigation was conducted in order to
determine the acceptable RMS error level while
maintaining an acceptable curve fit. Figure 6
shows a comparison of the RMS error variations
for four RBF networks up to 10,000 iterations.
These networks follow the He and Lapedes'
guidelines and are given by: 1-12-4-1; 1-12-
6-1; 1-12-3-1; and 1-12-2-1. The RMS
error variations for the latter two RBF

networks, 1-12-3-1 and 1-12-2-1, are
indistinguishable from one another in Fig. 6.
The comparison in Fig. 6 shows that depending
on the acceptable error level, one could work
with any one of the four networks. For present
purposes, the 1-12-4-1 RBF network which
had the smallest error at 10,000 iterations is
taken as the baseline network for further study.

Figure 7 shows the curve fits obtained from the
baseline 1-12-4-1 RBF network for various
error levels, or equivalently, number of
iterations. The RMS error ranges from
approximately 0.01 (6772 iterations) to 0.10
(1104 iterations). Figure 7 shows that each of
the four curve fits follows the general shape of
the training "curve". To investigate the RBF
network's behavior around the metric's
minimum value region, the predicted metric is
shown Fig. 8 for a focused phase space (120 deg
to 360 deg). The results shown in Fig. 8 suggest
that approximately 1100 training iterations are
sufficient to predict the vibratory hub loads
metric in the neighborhood of the global
minimum and more importantly, to ultimately
predict the optimum phase. In this case, the
1100 training iterations were performed in
less than 10 seconds of clock time.

Case 2. Missing Data Prediction

In order to determine whether a 1-12-4-1 RBF
network can predict the vibratory hub loads
metric's global minimum with the 270 deg
training data pair omitted, a new 1-12-4-1
RBF network was trained. This new 1-12-4-1
RBF network used 12 training data pairs.
Figure 9 shows the resulting interpolation,
inbound prediction. The 1-12-4-1 RBF
network is successfully used to predict the
global minimum and optimum phase in the
vicinity of missing data.

Case 3. Metric Versus 2P Control
Amplitude

This case involves variation in the vibratory
hub loads metric with 2P control amplitude A,
at a fixed 2P phase ®,=210 deg. This case
involves two sub-cases: inbound sub-case (Case
3a); and an out-of-bounds sub-case (Case 3b).
The respective number of available training data
pairs for training are four (inbound and out-of-
bounds) and three (out-of-bounds). Results



from the RBF, GRNN, and back-propagation
networks are presented.

Predictions by RBF Network

Case 3a Figure 10 shows the results using a 1-
4-2-1 RBF network. The network was trained
for 4000 iterations; the final RMS error was
0.0000. The inbound prediction (interpolation)
is acceptable. Any potential rate of increase of
the vibratory hub loads metric in the out-of-
bounds region (A;> 2 deg) is not captured by the
RBF network. This may be an .inherent
characteristic of RBF networks due to their
interpolative basis preventing satisfactory
extrapolation.

Case 3b Figure 11 shows the results from a 1-
3-1-1 RBF network. Recall Case 3b uses the
same training pairs as Case 3a except the A,=2
deg data point is excluded. The network was
trained for 4000 iterations; the final RMS
error was 0.0000. Figure 11 shows an
unacceptable out-of-bounds prediction; the
actual data at A,=2 deg (extrapolation) is not
predicted. An RBF network with linear transfer
functions in the second hidden and output layers
was also designed with no prediction
improvement. The vibratory hub loads metric's
drop-off in the out-of-bounds region persisted
even with the use of the linear transfer function
PEs. The unacceptable extrapolation resulting
from the RBF network led to additional studies
involving other neural networks.

Prediction by GRNN

Case 3a Figure 12 shows shows the results for
this sub-case using a 1-20-1 GRNN. The
network was trained for 1000 iterations; the
final RMS error was 0.0172. The attributes of
this network were defined by the default options
for this type of network (Ref. 11). The inbound
prediction (interpolation) is again acceptable
whereas the out-of-bounds prediction
(extrapolation) is unacceptable as the network
experiences "turn-off' beyond the training data
base.

Prediction by Back-Propagation Network

Case 3a Figure 13a shows the prediction from a
1-12-12-12-1 back-propagation network.
The hyperbolic tangent transfer function was
selected for all layers in the network. The
network was trained for 4000 iterations; the

final RMS error was 0.0039. The inbound
prediction is again acceptable. However, this
network also demonstrates a moderate "turn-
off" characteristic beyond the training base (A,
> 2.0 deg).

Figure 13b shows results for the same case,
Case 3a, with a linear transfer function PE
selected for the back-propagation network's
output layer and maintaining hyperbolic tangent
function PE's for the three hidden layers. The
RMS error for this network was 0.0018, with
all other network parameters unchanged. Figure
13b shows that there is no "turn-off"
phenomenon in the extrapolation beyond the
training base for this back-propagation
network.

Case 3b Figure 14a shows the results from a 1-
12-12-12-1 back-propagation network. The
hyperbolic tangent transfer function was
selected for all network layers. The network
was trained for 4000 iterations; the final RMS
error was 0.0000. The extrapolation is
unacceptable.

Figure 14b shows results for the same case,
Case 3b, with linear transfer function PE's
selected for all layers of the 1-12-12-12-1
back-propagation network. This network was
trained for 4000 iterations; the final RMS
error was 0.0361. Figure 14b shows
acceptable extrapolation. The success of the
back-propagation network compared to the RBF
network and GRNN in extrapolation may be the
result of the experimental data being
approximately linear with amplitude. Thus, one
observation is that the back-propagation
network is able to extrapolate provided the
network is given guidance on the basic behavior
of the plant model, i.e., the extent of linearity
present in the system.

Case 4. Metric Versus 3P Control
Phase Input

The measured vibratory hub loads loads metric
variation with a 3P control phase input (at a
constant amplitude Az=0.5 deg) is shown in Fig.
15. The training data have one minimum, the
global minimum, within the first quadrant.
There are nine training data pairs available (45
deg intervals), and applying the He and Lapedes'
guidelines, the selected RBF network is 1-9-3-



1. Network training was terminated after 6000
iterations and the final RMS error was 0.0169.
These results (Fig. 15) show that the 1-9-3-1
RBF network successfully models and predicts
the nonlinear variation of the vibratory hub
loads metric with 3P input phase. Figure 15
also shows the acceptable linear fit for this case
with one minimum in the vibratory hub loads
metric variation. This valid fit in optimum
control phase angle is expected since a single
harmonic is being used in the linear approach.
The actual vibratory hub loads metric at the
minimum is overpredicted, however, by over
20 percent.

In contrast to the good prediction shown in Fig.
15, Fig. 16 shows a bad prediction for Case 4
based on a 1-20-15-1 RBF network which does
not follow He and Lapedes' guidelines. This
network was trained for 6000 iterations; the
final RMS error was 0.0004. This figure shows
a shortcoming in overspecifying a network to
achieve a very small RMS error. The 1-20-
15-1 network yields poor inbound predictions
within certain input phase angle intervals.

Multiple Inputs, Single

Output Application

In the present study, RBF networks have been
successful in the one input, one output

applications covered under Cases 1, 2, and 4.
These three cases involved interpolation, or
inbound prediction. The four inputs, one output
application of neural networks presented here
also used an RBF network with Gaussian
functions in the first hidden layer, and
hyperbolic tangent functions in the second
hidden layer and the output layer.

Following the He and Lapedes' guidelines as
applied to the presently formulated 37-pair
training data base, a 4-36-9-1 RBF network
was used. The 4-36-9-1 RBF network was
trained for 10,000 iterations; the final RMS
error was 0.0205. As an indication of the
success of the training, Fig. 17 shows the 37
predicted outputs versus the corresponding
desired outputs (measured training data). The
modeling step was successful. Figure 18 shows
the RMS error variation with the number of
iterations. A better model may be achieved by
increasing the number of training iterations;

however, this is probably not necessary for
engineering purposes.

The predictions from the trained 4-36-9-1
RBF network are shown in Fig. 19. Figure 19a
shows acceptable prediction of the vibratory hub
loads metric as obtained from the 4-36-9-1
RBF network for the interpolative case when 2P
control phase is the input (at a constant
amplitude A,=1.0 deg). The accompanying
baseline metric's prediction (no IBC input,
A>=A3=0 deg) is also acceptable. The
corresponding single-input prediction (Case 1)
was shown in Fig. 5.

Figure 19b shows acceptable prediction of the
vibratory hub loads metric as obtained from the
4-36-9-1 RBF network for the interpolative
case when 3P control phase is the input (at a
constant A3=0.5 deg). The accompanying
baseline metric's prediction (no IBC inpuf,
A,=A3=0 deg) is also acceptable. The
corresponding single-input prediction (Case 4)
was shown in Fig. 15.

Figure 19c shows acceptable prediction for the
vibratory hub loads metric as obtained from the
4-36-9-1 RBF network for the interpolative
case when 3P control phase is the input (at a
constant A3=0.5 deg, and A,=1.0 deg and
®,=210 deg). The accompanying baseline
metric's prediction (with IBC input, A,=1.0 deg
and ®»=210 deg, A3=0) is also acceptable.

For this particular network training, the two
baselines were cast as 4-pair and 2-pair
training data bases, respectively. Figures 19a
to 19¢c show that the RBF network baseline
predictions are not strictly linear. The authors
believe that this prediction can be improved by
specifying a finer resolution in the phase space
associated with the training data for the
baselines. Depending on a user specified band of
tolerance for the modeling of the baseline
vibratory hub loads metric, one could specify
information regarding the baseline metric at,
for example, 60 deg intervals instead of the
present 360 deg interval. However, an increase
in the resolution of this "baseline" phase space
will increase the size of the overall training data
base, and will consequently increase the clock
time required for completion of the training
step.



Nevertheless, the 4-36-9-1 RBF network can
be used to model and interpolatively predict the
nonlinear vibratory hub loads metric when
there are four inputs (2P and 3P amplitudes and
phases).

Considerations for Neural Network
Application and Feedback Control

An efficient neural network application can
enable accurate plant modeling control system
feedback. In the present context, an efficient
neural network application is defined as one that
can successfully perform plant model
identification using a minimum number of
training data pairs. The acquisition of training
data (and subsequent network learning) can
require considerable time. Reducing the number
of required training data pairs can reduce the
time both in data acquisition and in network
design calculation.  Additionally, in many
instances such as vibratory hub loads control,
the potential number of training pairs for all
input control combinations, including amplitude
and phase variations, result in situations where
the training base will only be a small portion of
the possible control input combinations that
make up the complete data set.

In Case 1, the number of available training data
pairs was 13 (A®,=30 deg phase interval). The
following four figures show predictions from
four different RBF networks using training data
at A®,=60 deg and A®,=90 deg phase intervals.
Note that this selection of training pairs results
in the 0 deg and 360 deg pairs being omitted
from the training base. In order to maintain
periodicity in each of these four cases, the 0 deg
and 360 deg training pairs were always
included. Depending on which interval (A®,=60
deg or 90 deg) is under consideration, the actual
number of training pairs used in training the
network thus turns out to be one of the
following: 7, 8, 5, or 6 (Figs. 20, 21, 22, and
23, respectively). All four RBF networks used
He and Lapedes' guidelines and were trained for
10,000 iterations. These figures also contain
results from the linear transfer matrix
approach using the exact same input data base as
that used by the corresponding RBF network.
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Figures 20 and 21 show predictions from two
RBF networks (1-6-3-1 and 1-8-4-1) that
used different A®,=60 deg phase interval
training data bases. Figure 20 shows results
from a 7-pair 1-6-3-1 RBF network trained
with data pairs at the following phase values:
®,=0, 60, 120, 180, 240, 300, and 360 deg.
This network had a final RMS error of 0.0160.
Although not capturing the nonlinear behavior
(local maxima) at ®,=210 deg, the global
minimum is predicted very well (©,=270 deg).
Figure 21 shows results from the 8-pair 1-8-
4-1 RBF network trained with data pairs at the
following phase values: ®,=0, 30, 90, 150,
210, 270, 330, and 360 deg. This network had
a final RMS error of 0.0003. Here the
nonlinear behavior at ©,=210 deg is modeled
yet the global minimum is predicted to be at
®,=285 deg. Nevertheless, clearly the 1-6-3-
1 and 1-8-4-1 RBF networks using a A®,=60
deg phase interval data base can be successfully
used to model and predict the nonlinear variation
of the vibratory hub loads metric with 2P
control phase. Global minima are well
predicted. The results from the linear single
harmonic transfer matrix approach are not as
accurate as the results from the neural network
approach. In both cases the linear transfer
matrix gives a global minimum around ©,=230

deg.

Figures 22 and 23 show the curve fits from two
RBF networks (1-4-2-1 and 1-6-3-1) that
used different A®,=90 deg phase interval
training data bases. Figure 22 shows results
from the 5-pair 1-4-2-1 RBF network trained
with data pairs at the following phase values:
®,=0, 90, 180, 270, and 360 deg. The final
RMS error was 0.0000. Similar to Fig. 22, Fig.
23 shows results from the 6-pair 1-6-3-1
RBF network trained with the data pairs at the
following phase values: ®,=0, 60, 150, 240,
330, and 360. The final RMS error was
0.0112. Considering that the global minimum
for the Case 1 vibratory hub loads metric's
variation exists in the vicinity of 270 deg, it
can be seen from Figs. 22 and 23 that this
minimum is not well predicted by the 1-4-2-1
and 1-6-3-1 RBF networks using a A®,=90
deg phase interval data base. The linear transfer
matrix predictions are even worse for both
cases.



Largest Acceptable Phase Interval The actual
rotor azimuth phase intervals involved in the
interpolative type of predictions that have been
presented so far in this paper can be
summarized as:

Case Training Azimuth  Prediction
No.. nP Data Interval# (RBF
AD,” network)

1, 2P 13-pair 15 Acceptable
2, 2P 12-pair 15 Acceptable
4, 3P 9-pair 15 Acceptable
1, 2P 7-,8-pair 30 Acceptable
1, 2P  5-,6-pair 45 Unacceptable

# deg, for nP control input A®,"=Ad/n,
physical rotor azimuth control interval

It appears that for an acceptable prediction,
A®,*=30 deg is the largest rotor azimuth phase
interval that can be tolerated (control-angle-
interval-limit).  The nonlinear vibratory hub
loads metric's trend and the control-angle-
interval-limit may be determined by the
physics of the basic phenomenon that is
important during the experimental test
condition (in this case a simulated descent).
Here the rotor vibratory loading is due in large
part to blade vortex interaction. Further
studies are obviously required on this subject.
However, for this study, the maximum allowable
phase interval for data training is A®,"=30 deg.

Conclusions

This paper presents an application of neural
networks involving the nonlinear modeling and
prediction of measured rotorcraft hub loads as
represented by a single vibratory hub loads
metric. The authors believe that this
application is the first of its kind. Using 2P and
3P control input phase or amplitude as network
input, the vibratory hub loads metric is the
network output. The results from the present
study show that neural networks accurately
model experimental data. Issues in
implementing a feedback control system using a
linear transfer matrix approach versus a neural
network approach were studied.  Specific
findings include:
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. The radial-basis function (RBF) neural

network works well when 2P or 3P phase is
the network input (at constant control input
amplitude). The RBF network is robust for
interpolation purposes, including significant
nonlinearities.

. The back-propagation neural network works

well when 2P control amplitude is the
network input (at constant control phase).
The back-propagation network is also robust
for interpolation purposes. For the data set
studied, acceptable predictions for
extrapolation purposes are produced.

RBF neural networks are superior to linear
transfer matrix plant models for the
experimental vibratory hub loads data
presented in this paper, particularly 2P I1BC
data.

. The smallest number of RBF network

training data pairs, i.e., that which results
in the most efficient network, depends on a
newly identified interval limit for the
physical azimuth control angle. This
control-angle-interval-limit, A®*=30 deg,
is believed to be linked to the basic physical
phenomenon that is important at the present
experimental test condition, namely, the
blade vortex interaction phenomenon.

. The RBF neural network works well when

there are multiple inputs to the network
(2P and 3P control amplitudes and phases)
and prediction is of the interpolative type.
This includes predictions of the significantly
nonlinear, non-baseline metrics and the
accompanying baseline metrics.
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scale (®,=120 deg to 360 deq)
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Fig. 23 1-6-3-1 RBF neural network modeling and prediction; 6-pair
modeling of Case 1 using data at ®,=0, 60, 150, 240, 330, and 360 deg
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